BAUER-FURUTA INVARIANTS AND GALOIS SYMMETRIES

نویسندگان

چکیده

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Bauer-Furuta invariants and Galois symmetries

The Bauer-Furuta invariants of smooth 4-manifolds are investigated from a functorial point of view. This leads to a definition of equivariant BauerFuruta invariants for compact Lie group actions. These are studied in Galois covering situations. We show that the ordinary invariants of all quotients are determined by the equivariant invariants of the covering manifold. In the case where the Bauer...

متن کامل

Bauer-furuta Invariants under Z2-actions

S. Bauer and M. Furuta defined a stable cohomotopy refinement of the Seiberg-Witten invariants. In this paper, we prove a vanishing theorem of Bauer-Furuta invariants for 4-manifolds with smooth Z2-actions. As an application, we give a constraint on smooth Z2-actions on homotopy K3#K3, and construct a nonsmoothable locally linear Z2-action on K3#K3. We also construct a nonsmoothable locally lin...

متن کامل

A Gluing Theorem for the Relative Bauer-furuta Invariants

In a previous paper we have constructed an invariant of four-dimensional manifolds with boundary in the form of an element in the stable homotopy group of the Seiberg-Witten Floer spectrum of the boundary. Here we prove that when one glues two four-manifolds along their boundaries, the Bauer-Furuta invariant of the resulting manifold is obtained by applying a natural pairing to the invariants o...

متن کامل

Galois symmetries of fundamental groupoids

We give a simple proof of the formula for the coproduct ∆ in the Hopf algebra of motivic iterated integrals on the affine line. We show that it encodes the group law in the group of automorphisms of certain non commutative variety. We relate the coproduct ∆ with the coproduct in the Hopf algebra of decorated rooted planar trivalent trees defined in chapter 4 – a version of the one defined by Co...

متن کامل

Galois invariants of dessins d’enfants

The two main problems of the theory of dessins d’enfants are the following: i) given a dessin, i.e., a purely combinatorial object, find the equations for β and X explicitly; ii) find a list of (combinatorial? topological? algebraic?) invariants of dessins which completely identify their Gal(Q̄/Q)-orbits. The second problem can be interestingly weakened from Gal(Q̄/Q) to ĜT , but it remains absol...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

ژورنال

عنوان ژورنال: The Quarterly Journal of Mathematics

سال: 2011

ISSN: 0033-5606,1464-3847

DOI: 10.1093/qmath/har021